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Fast Direct Numerica! Solution of the 

Nonhomogeneous Cauchy-Remann 

HARV-LRD LOK~X AND E. DALE M~JUXV 

A fast direct (noniterative) “Cauclry-Riemann Solver” is developed for solving the 
finite-difference equations representing systems of first-order ehiptic partial differentiai 
equations in the form of the nonhomogeneous Cauchy-Riemann equations. The method 
is second-order accurate and requires approximaiefj, the same computer time as a fast 
cyclic-reduction Poisson solver (Runeman’s method, b:ut with the cyclic reduction cf 
simple tridiagonal matrices replaced by the Thomas algorithm). 

The accuracy and efficiency of the direct solver are demonstrated in an application ::o 
solving an example problem in aerodynamics: subsonic inviscid fiow over a biconvex 
airfoil. The analytical small-perturbation solution contains singularities, which arc 
captured welt by the computational technique. 

The algorithm is expected to be useful in nonlinear subsonic and transonic aerc- 
dynamics. 

INTRODUCTION 

The previously available fast, direct computational algorithms for sching 

hnite-difference equations representing partial differential equations containing 
elliptic operators have been limited to second-order equations. Those algorithms 
and the corresponding computer programs are commonly referred to as .“fast 
Poisson solvers” (e.g. see [l-6]). They have been used with significant success in 
computational physics. In particular they have been useful in computational fluid 
dynamics (e.g. see discussion and references in Ref. [7], especially pp ii3 Z7 
180 ff, and 193, usually in the solution of Poisson’s equation for the stream func- 
tion, or for the pressure, within computational techniques for solving the Na,vier- 
Stokes equations. More extensive use of the elliptic solvers in other flow problems 
has been discussed briefly in Ref. 181, which presented a technique for using the 
direct solvers in problems with arbitrary interior boundaries. 

In some problems in computational fluid dynamics there appear to be advantages 
in working with the correspondiag Jirst-or&r elliptic system of equations 19. IO] 
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in terms of the “primitive variables.” In the simplest case, these are the Cauchy- 
Rienzam equations for the velocity components, U and V (corresponding to 
Laplace’s equation for either the velocity potential or the stream function). In more 
general cases, the corresponding equations can be used in the form of the non- 
homogeneous Cauchy-Riemann equations. This formulation may be preferred 
over either the velocity-potential or the stream-function formulation when the right 
sides are not both identically zero in the problem. This will be of special interest 
in planned future applications. Therefore it was considered desirable to develop a 
fast direct algorithm for numerically solving the finite-difference equations repre- 
senting those first-order elliptic equations. This paper presents such a development, 
including (a) discussion of appropriate indexing and mesh configurations with 
resulting orders of accuracy, (b) a procedure for decoupling the algebraic matrix 
equations for V values from those for U values, (c) the reduction (direct solution) 
of the matrix equations, (d) the final determination of Jr and U, and (e) an example 
problem in subsonic aerodynamics that demonstrates the accuracy and efficiency 
of the new direct Cauchy-Riemann solver. 

THE NUMERICAL PROBLEM 

The linear set of elliptic, first-order, two-dimensional partial differential equations 
to be solved numerically can be written in the form 

a ~/a.~ + avpy = S(X, Y), (14 
aujal) - avpx = -w(x, y). (lb) 

In applications to inviscid incompressible fluid flow U and V are components of 
total velocity in the x and y directions, respectively, and s and w  are functions 
representing source and vorticity distributions, respectively, which may include 
point sources and point vortices. If s and w  are zero, Eqs. (1) are the Cauchy- 
Riemann equations. 

We wish to replace Eqs. (1) with a set of finite-difference equations that are to 
some order of approximation their equivalent, and then consider the direct (i.e., 
noniterative) solution of the resulting coupled algebraic expressions. 

The Difference Equations, the Boundary Conditions, and the Mesh 

Consider the simplest case of differencing formulas where the derivatives in 
Eq. (la) are approximated by backward differences at eachj, k and those in Eq.(l b) 
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are approximated by forward differences. We then have the set of difference 
equations. 

wherej and k index each point (-X, y) at which Eqs. (la) and (lb) are both approsi- 
mated. The situation is illustrated schematical!y in Fig. i. The computation 
boundary is indicated by dashed lines. The solid symbols represent positions wlnere 
the data are given by the boundary conditions, with squares indicating U vaiues 
and circles indicating V values. The data at the remaining points (open symbols) 
must be determined from the set of algebraic relations given by Eqs. (2). The 
dot (.> represents a position at which the continuity equation: (la), is ba,lanced., 
and the cross (+) represents a position at which the vorticity equation, (IS)? is 
balanced. This notation will have more meaning in a later reordering of the mesh. 
In this example these positions are coincident (parts (a) and (b) of Fig. 1 show 

(al DIFFEREkCIPdG MESH FGR I:) ~IFFERENCII~G PJESti FOR 

“, + Yy = s IJ I - ‘/\ = -. :,) 

EKG. I. Simplest computation mesh and indexing for (fist-order> one-sided fii~ite differences 
(a - U data; 0 - V data; . N U, + V, = S; + - U, - F:, = --w; solid symbols w prescribed 
boundary values; dashed lines indicate computation boundary). 

identical locations), but the differencing schemes used to approximate the balances 
are opposite (indicated by arrows on Fig. 1). Note that there are twelve equations 
(six dots and six crosses) and twelve unknowns (six values of U and six values 
of V). Equations (2) are a first-order approximation to Eqs (I); that is: the trun- 
cation error in those equations is proportional to the first power of the spacing 
(Ax, 49. 

Another approximation of Eqs, (1) can be constructed by staggering in half 
steps the positions at which the CT and V data are carried in the manner illustrated 
in Fig. 2(a). For the moment, disregard the “U krdices” and i6 6” indices” and look 
at the j and k indices located only in the shaded areas (on the lower and left sides) 
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on Fig. 2(a). The symbols on Fig. 2(a) have the same meaning as before but now 
the positions at which the continuity and vorticity equations are balanced are no 
longer coincident, and the positions at which the U, V data are stored are different 
from the balancing positions as well as from one another. The set of difference 
equations can be written 

where j and k index a point (.) at which Eq. (la) is approximated and j f l/2, 
k + l/2 is the corresponding point (+) in Fig. 2(a) at which Eq. (lb) is approxi- 
mated. Notice that each partial derivative has now been replaced by a central 
difference formula, and Eqs. (3a) and (3b) are, therefore, a second-order-accurate 
approximation of Eqs. (1). If s and o are zero, the only difference in the actual 

J INDICES k-AX-- 

U INDICES 

, 
4 IA 

V INDICES 

1 I  

I  2 3 
' k 
4 i 

V INDICES 
(0) ORDINARY UPPER BOUNDARY (b) MODIFIED UPPER BOUNDARY 

FIG. 2. Staggered computation meshes and indexing for (second-order) central differences 
with NX = 3, NY = 2 (a N U data; o N V data; . @ u, + v, = s; + - u, - v, = -w; 
solid symbols - prescribed boundary values; dashed lines indicate computation boundary). 

programming of the algorithms represented by Eqs. (2) and Eqs. (3) is in the way 
the boundary conditions are aligned with respect to the data. Fig. 2(a) shows one 
way in which the staggered data can be carried in the mesh. 

Other alignments also exist. For example, Fig. 2(b) illustrates an especially 
useful case. Again, disregard “U indices” and “V indices” and look at j and k in 
the shaded areas only. In this case the derivatives in Eqs. (1) are approximated 
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by the central difference formula everywhere except for the vorticity equation 
along the upper boundary. For this one line, Eq. (3b) is replaced with 

Although Eq. (3~) is only accurate to the first order, its use is quite appropriate 
for certain applications and will not degrade the overall second-order accuracy. 
In fact, for reasons given later, the approximation represented by Eqs. (3aj, (3b). 
and (3~) is the one we will consider in detail. 

In the section to follow this one we consider in some detail the direct, noniterative 
solution of Eqs. (3); but first it is convenient to abandon the half-step notation 
that appears in these equations in favor of the notation illustrated in Fig. ;(a‘). 
Use now the j and k values denoted as “CT indices” for indexing U and the j and k 
values denoted by “V indices” for indexing V. One can think of a U mesh and a 2’ 
mesh as being distinct and displaced by (g) Ax and ($) dy from each other, Furthe:, 
let the j index of s correspond to that of V and the k index of ,r correspond to that 
of U; and l.et the j index of w correspond to that of U and the k index of ‘*P corre- 
spond to that of V. With this convention the second-order-accurate equations 
in terms of the staggered U indices and VV mdices for Fig. 2(a) are 

Notice that Eqs. (2.) and (4) have the same form, although they represent quite 
different approximations to the basic partial differential equations (2) 

Recall that Fig. 3(b) is the same as Fig. 2(a) except that the vorticity equation 
written for the top row of crosses takes the form of Eq. (3~). En the notation of ‘“C 
indices” and “ V indices,” the latter equation is the same as (4b) but with A,: la? the 
denominator of the first term replaced by (4) Ay, that is, for the top row of grosses 
in Fig. 2(b), Eq. (4b) is replaced by the following equivalent of (3~): 

For this top row only, the k index of U corresponds to the same 1’ location as the k 
index of V. In a mesh construction corresponding to Eig. 2(a) or 2(b) iet KY be 
the number of dots (or crosses) along a horizontal row and let NY be the number of 
dots (or crosses) along a column. Then all of Eqs. (4) apply forj = 1, z,..., ?<x; 
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Eqs. (4a) and (4b) apply for k = 1,2 ,..., NY - 1; and Eqs. (4a) and (4~) apply 
for k = NY. 

For the case represented by Fig. 2(b), the matrix formulation of Eqs. (4a), 
(4b), and (4~) is 

1 
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where each equation has been multiplied through by Ay, and where ,J = Ay/Ax, 
and f and g include s Ay and --w A,: respectively, together with the terms carrying 

the boundary conditions and represented by the solid symbols shown in Fig. 2(b). 
Let T(u, b, c) be a tridiagonal matrix, and set 

I = T(0, 1, 0), 
A = ,uT(-1, 1, 0), 
B = /LT(O, 1, -1) = AT, 

i 
u, = c0uJ1,,, U2.E ,.‘., Gw,b), :, 

i 

(6) 
vk. = cowl,, 9 v,,, >.a., VNX,?J, 
ft = wEl,k LL?,x ,...,J;VX,k), 
a! = W&k 9 gz,, T.‘., givx,J, 

where k ranges from 1 to NY, and where A, B, and I are square matrices each of 
which is of order NX. Then Eq. (5) can be extended to form the following matrix 
of block matrices 
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where each of the four quarter blocks of the large matrix in ~q. (7) is of bixk 

dimension NK 

THE SOLUTION Ak~owrm 

The Cauchy-Riemann solution algorithm to be described here for solving Eqs. 
(I), in the discrete form of (7), has a direct analogy to a procedure whereby Eqs. (rj 
would be differentiated first (if differentiable) and then combined to obtain a 
Poisson equation for V. That analogous procedure, however, is not equivalent 
to the present algorithm; the two approaches have similarities and differences, 
which are described below. As we proceed. it will be seen that the development of 
the present algorithm does contain a matrix equation that is equivalent to a discrete 
Poisson difference equation. As a result, an available direct Poisson soh~er (e.g. a 
variation of Buneman’s [I]) can be used within the present solution procedure. 

The following simple operation can be used to annihilate all entries in the upper 
left-hand quarter of the square block matrix in Eq. (7). Consider the upper half 
of this equation: 

(!) Subtract the second row from the first row and add A times the nrst 
row in the lower half. 

(2) Subtract the third row from the second row and add A times the secocti 
row in the lower half. 

(3) Repeat for all but the last row of the upper half, to which is added a 
times the last row from the lower half. 

Next consider the lower half of Eq. (7): 
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(1) Add the bottom row to the one next up. 

(2) Then add the second from the bottom to the one next up. 

(3) Repeat until all the-1 appear only in the diagonal blocks of the lower 

left quarter block. 

Eq. (7) now has been reduced to the convenient form 

0 / 2I+AB -1 

-- 

-1 

0 / -1 2ICAB -1 
I 
I 

0 j -1 21 
0; 

-___--_---_j_-_----- 

B 
-1 

+AB 
-1 

L 

rzz 

where 

-1 
-1 j 

FN Y-I 

F NY 

3 
61 
G2 

B . . . 
B . . . 

B 
B 

B 

‘u, - 
u2 

-21 UN,, 
2IfAB UN, 

----- ---- 

B VI 
B V, 

B vNY-l 

B QVN y 
J- . 

(8) 

Fx = fi - fz + Ag, , G, = g, + g, + *‘* + &Y-l + g,, , 
FB = fi - fs + Ag, , G=g,+g,+-.-+a~, 

FNi-1 = fNY-1 - fNY + A&--1, GNY-I = gNY-1 + f&v,, 
FNY = fNY f- A&n-, G - NY - gNY* (9) 
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Note that a factor of 4 in the last column of blocks in the large matrix in Eq. (8) 
has been transferred to the last vector, VNY ) in the column of IJi ) Vh: vectors. 

If we detine A1 to be the block matrix consisting of the upper right quarter of t:le 
square block matrix in F-q. (8); A, to be the lower right quarter; and 

> F= 

Eq. (8) can be written 

Significant results accomplished at this point are that V has been decoupled from 
U, so V is determined solely by (1 la) and then IJ is determined by (1 lb); and that all 
the diagonal blocks of A, are identical and one off-diagonal block has a factor of 2. 
The significance of this will be apparent in the subsection “‘Cyclic Reduction of 
Particular Block Matrices.” 

The operations required to generate F and G and to compute U given $7 are 
simple to program and require relatively small amounts of computer time. (A table 
of computing-time measurements is given in a later section.) The major task is 
to solve Eq. (1 la) for V, where A, is a very lar ge but sparse matrix, This can be 
carried out by cyclic reduction as explained in the following sections. 

Before considering the direct solution of Eq. (1 la), let us investigate some basic 
concepts in the efficient solution of block matrix equations. Let us examine soitahiorn 
procedures for the following matrix equation, which is identical to (1 la) except For 
the last column of blocks in the large block matrix A, . I=or illustration we consider 
the special case where the block dimension is NY = 5 and the dimension of each of 
the vectors V1 and FJz is an arbitrary integer NX: 
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where C is 21 + AB, or the square tridiagonal matrix of scalar elements (of order 
NX) given by 

c = (Ay/dx)~ 

in which 

c-l -1 
-1 c -1 

-1 c’. 

. -1 . . 

-1 c 

c = 2[1 + (Ax/Ay)*]. (1 W 

1 5 (134 

(a) Gaussian elimination. Consider first a form of Gaussian elimination for 
reducing Eq. (12). In a forward sweep one can reduce (12) to the form 

where 
B, = I, B, = C, and BN+, = CB,,, - B, , (14b) 

from which the solution follows (to be evaluated in reverse order): 

V, = B;l[& + B,V,I 
V, = B,l[@‘, + B,V,] 
V, = B,-I[& + B,V,] . (14c) 
V, = Bi’[fi, + B3V5] 
V, = B;l[J?,] 

Now iftlre B,v were scalars, the construction of each P,c would require four multipli- 
cations and four additions, and the final recursion for the V, would require three 
multiplications, four additions, and five divisions; a total of eight additions, 
seven multiplications, and five divisions. However, when the B, are matrices, the 
situation is entirely different, and this fact motivates the following discussion. 

The key to the direct reduction techniques is that there exists a matrix poly- 
nomial, which can be factored (cf. Ref. [5]). For example, in Eq. (14), each B, is a 
polynomial in C of degree N (where N is also the number of roots of the polynomial; 
see Eqs. (16) below). This follows from the recursion relations, Eq. (14b). Thus, one 
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can show by solving the matrix difference equation for N (along with the two con- 
ditions) in Eq. (14b) that 

f; = (,p _ 4y’([c + (G” _ 4ql:‘z]N+l _ [C _ (C2 _ /J 

from which it fellows (i.e., the factorization is given by) 

B, = fi (C - AnI), 
n=1 

where (see Dorr[4]) 

A, = 2 cos[mT~(N + l)]> n = I, 2: . ..) N. 

It is important to recognize that the factors in a product of the form 

(C - h,I)(C - hjH) 

commute, Xi and Xj being any two scalars. Let 

BAn = G - A, (iTa) 

that B,,n has the same construction as 61, defined in Eq. (lhj, except 

c = 2 + (.Llx/Ay)y2 + A,). ii 7b) 

Thus, by the definition in Eq. (16a), the term B,F, in Eq. (14a) represents an oper- 
ation that can be expressed as four consecutive matrix muitiphcations on a vector 
of dimension NX that is originally filled with F, . In our notation 

All four of the matrices Bhm are tridiagonal and their sequence is immaterial because 
they all commute with one another. 

If we let DYX2, ALAM, and NX be FORTRAN variable names representing 
(~J~/L!x)~~ >\, ~ and the rank of @, respectively, the sequence 

.DO 1 N = 1,4 

ALAM = 2.*CUS(N*PI/(N f I)) 

I CALL SUBROUTINE TRIM(DYX2, ALAM, V: NX) 

would carry out the actual arithmetic necessary to cal.cuiate the product 
Eq. (1.8). The subroutine TRIM is constructed to perform a single multipiicatioc 
of the contents of the first NX elements of the array V by the tridiagona! 
return the results in the same array V. 
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Just as B,F, can be expressed as, and computed by, four consecutive multi- 
plications of a vector by tridiagonal matrices, the term B;‘fi5 in Eq. (14~) can be 
expressed as five consecutive tridiagonal inverses operating on a vector originally 
filled with J?, . Thus 

and the program 

DO 1 N = 1,5 

ALAM = 2.*COS(N*PI/(N + 1)) 

1 CALL SUBROUTINE TRIC(DYX2, ALAM, V, NX) 

would carry out the actual arithmetic if the subroutine TRIC performs a single 
tridiagonal solution on the array V and returns the results in the same array. 
(Throughout this paper we refer to the solution of a tridiagonal-matrix equation as 
a “tridiagonal solution.“j Both TRIC and TRIM are extremely simple programs to 
write. Again because of the commutative property, the sequence of operations in 
Eq. (19) is immaterial. 

On the basis of the above discussion, we now note that the solution expressed by 
Eqs. (14) in matrix algebra would require 16 tridiagonal multiplications, 15 tri- 
diagonal solutions, and eight vector additions. 

(b) Centralized elimination. Consider next the solution to Eq. (12) started by 

i 

B, -B, 0 
0 B, -B, 
0 0 B,-B, 
0 0 -B, 
00 0 

and followed by 

0 
0 
0 
B, 
80 

V, = B;l& + V,], 
V, = B,l[@‘, + B,V,], 
V, = (B, - Bl)-l[fi,], . (2Ob) 
V, = B,*[fi;, + BIV,], 
V, = B;l[@, + V,]. 

(Notice that B, - B1 factors and B,V, occurs twice.) Again if the B, were scalars, 
the arithmetic count would be eight additions, four multiplications, and five 
divisions. This is not largely different from the number of operations required using 
Eqs. (14) and scalar arithmetic. When the B,n are matrices, however, the “operation 
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count” for Eqs. (20) is five tridiagonal multiplications, nine tridiagonal solutions, 
and eight vector additions. This is about half the arithmetic required for the solnticn 
represented by Eqs. (14) even when there are only five VI, vectors involved. 

(c) Cyclic Pen’lcctioz. Clearly, block matrices having a form similar to the one in 
Eq. (12) can be more and more efficiently inverted as one d,ecreases the number of 
simple repetitive matrix multiplications and tridiagonal solutions required in the 
process. This amounts to making the largest required value of N in Eq. (l@a) as 
small as possible, and to require that the use of those N with large K that; do 
appear, be as infrequent as possible. These concepts a aiien to the theory in- 
volving the solution of matrix equations with scalar elements. (Simple Gaussian 
elimination remains among the most efficient techniques for solving a tridiagonai 
matrix equation with scalar elements.) 

robably the most widely known technique for obtaining this minimization of 
operations is the method of recursive cyclic reduction, devised by 
G. Golub witla collaboration of Dr. R. Hackney (see Refs. [l-3]). Tnis 
based on odd/even reduction, which was used extensively by Hackney 
two-dimensional Poisson solvers and was the basis for the ex.tension b 
[1] to his double cyclic reduction algorithm for solving Poisson’s equ 
reduction has been studied extensively by Buzbee, Golub, and Nielson [5] and has 
been used by Martin [II] in a three-dimensional soiver. Fourier transform 
techniques can also be used to increase the efficiency of direct solutions. In 
certain problems they appear to be more efficient than c-yclic reduction ( 
and in other problems less (Ref. [16]). In any event, we concentrate here on cyclic 
reduction because of its greater generality. Cyclic reduction works best on a block 
matrix having the form displayed in Eq. (12) when the block dimension lies in the 
set F- - 1 where L is an integer. In such a case the matrix operators are 

where 

A, = 2 cos[(212 - QT/2N3, n = 1, 2:..., N$ (2lb) 

N = 2’, 1’ = I, 2,.,., L - I. (.> 1 _ \.-1 4 

Notice that the following recursion relation exists 
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We make use of these concepts in the following sections. 

Cyclic Reduction of Particular Block Matrices 

The block matrix A1 in Eqs. (11) differs from that shown in Eq. (12) by an entry 
in the right column. For example, given eight rows of unknowns, Eq. (lla) can be 
written 

A,V = 

c -1 
-1 c -1 

-1 c -1 
-1 c -1 

-1 c -1 
-1 c -1 

-1 c -21 
-1 c 

= F. (22a) 

Cyclic reduction (multiplying the even rows by C and adding the adjacent odd 
rows) leads successively, on the left side, to 

(22b) 

and 

K3lW81, (224 
where the C, are given in terms of C by Eqs. (21). The solution is found for V, , 
from which V, follows, then V, and V, , etc. 

The simplicity of this algorithm derives from the choice of the particular differ- 
encing formulation used for U, in the vorticity equation along the upper boundary, 
the top row in Fig. 2(b)(Eq. (4~)). If, instead, the scheme illustrated in Fig. 2(a) 
had been used, rows 7 and 8 on the left side of Eq. (22a) would have been 

-1 

The solution to a set of equations ending in this fashion is not so straightforward, 
although it can also be reduced to a series of tridiagonal operations. 
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For cyclic-reduction to work best on the matrix A, , the number of rows of open 
circles in Fig. 2(b) should be in the set 2, 4, 8, lb,..., 2L. The number of columns of 
circles in Fig. 2(b) is immaterial, affecting only the size of the tridiagonal C in 
Eq. (13a). 

Note at this point that Eq. (12) has the same form as is obtained in solvmg 
Poisson’s equation with Dirichlet conditions. Pn that case, the values of d indicated 
in E.q. (2?c)(E = 1, 2 )...) L - 1) are appropriate, where the number of rows in the 
block matrix is 2L - 1. However, Eq. (22a) actually has a form that could be 
obtained in solving Poisson’s equation with a Nelmla~r~z condition on one boundary 
(cf. Ref. [5]). In this case, the number of rows of blocks in Eq. (22a) is 2L, and the 
values of I used in Eq. (21~) should be I = I, 2,..., L. 

Special Treatment to Eliminate Roundof DiJhdries 

The discussion in the two previous sub-sections implies the use of both matrix 
multiplications and tridiagonal solutions. Unfortunately, repeated matrix m~ui?itipii- 
cations can lead to very large numbers, consequent losses of accuracy due to 
roundoff errors, and eventual breakdown. For this reason Buneman [I] proposed. a 
procedure that completely avoids matrix multiplication in the solution process. 
The key to this procedure can be appreciated by regrouping the right side cf the 
equations that result from the sequence shown in Eq. (22) under the constraint 
that (a) C, is made to be a factor of one of two sets of terms on the right, and jb) 
the grouping is recursive. For example, we set 

and require in proceeding from (23b) to (23~) that 

c,q$j + pp = c,[c,qp’ + pl”] + csqp + p$” f c,qp + j&p-‘, 
c,qy + pf) = C,[C,q,‘l’ + ps(l’] i- c, 

etc. If such a construction for the p;’ and q:” is possible without performing any 
matrix multiplication, then no multiplications are required in the whole process 
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since C$C, = I and the multiplication implied by C,qi7) is cancelled by the 
inverse. With some straightforward algebra one can show 

pt’ = FI:, (k = 1, 2 )...) NY), GW 

pp = pf!1 + Ep& t- c-y2p3, (ii = 2, 4 ,...) NY), Wb) 
pp (1) (0) (1) 

= pk-2 - pk-1 + pk - q$$ + Ep)$ + c,y-p& + pF2 - pF1 + 2p:’ 

- Epfjl + epg 2- 4231, (k = 4, 8 )...) NY), (24~) 

where E = 0 if the subscript is greater than the block dimension NY of the block 
matrix, A, (i.e., the number of rows of open circles in Fig. 2(b)). Otherwise, E is 1. 
The general term for I > 2 is 

Pk 
(Z) = p;:;; - p2$’ + pp’ - l pi;;) + ep$$$ + cgy--p&?; + pf:;l - j$:;’ 

+ 2pr-l’ - E&) + Ep&T$ - Ept;$], (k = 4h, Xh, 12h ,..., NY), (24d) 

where 12 = 2tz-*), N’ = 2fz-l), and the C,, are given by Eqs. (21) with N 
replaced by N’. The expressions for qf’ . mvolve only simple combinations of the 
pf’, thus 

Qk (0) = 0 

qk’ = &$!I, + p!’ - EP$), 

qF’ E ‘(--p& + py - g!l’ ) 2 X+2 9 

and, in general, for I 3 2, 

Wa) 

G’5b) 

(25~) 

Only the pf’ are needed in the forward recursion (to be illustrated below). The 
qi” are calculated in the backward recursion but are never stored. 

Summary of Procedure for Determining V 

The rather ponderous notation used in Eqs. (23)-(25) may lead to the implica- 
tion that the calculation procedure is complicated. Actually, quite the reverse is 
true. The computations are easy to program and necessitate only a minimum of 
computer storage (for example, fk , FE , pi’), and Vk all occupy the same array of 
dimension NX in memory, as do g, , G, , and U,). 

In order to demonstrate the simplicity, we have prepared Fig. 3 (cf. Ref. [3]) 
to illustrate what actually is required for the direct cyclic reduction for a mesh 
with eight rows. In the first place, none of the algebra on the left side of Eqs. (23) 
takes place in the computer. Only the right side is formed and only the values of 
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i0) FORWARD RECURSION 

FIG. 3. Ilk&ration of direct cyclic 

prj need be stored. Initially eight vector arrays of dimension PLY are filled with data 
representing the boundary conditions and the source and vorticity distributions 
according to Eqs. (6) and (9). The preliminary computations of the P, for use in 
Eq. (24a) from Eq. (9) are straightforward. For generality in presentation, Fx- is 
labeled p:“!’ (see Eq. (24a)) and appears in the left column of Fig. 3. The next 
column is formed according to Eq. (24b) operating on vectors to its left and over- 
storing the old information in the even numbered rows. Successive columns are 
formed, each time overstoring the information in the arrays indicated in the Zgore. 
At any stage the information required to compute pk in Eqs, (24) is just that in- 
formation stored in itself and neighboring vectors from previous caiculations, 
In the formation of each column, only repetitive t~~dkrgonal s&Gons (no multi- 
plications) and vector additions are required. The trkdiagonal solutions are per- 
formed successively (after factoring C, into the tridiagonal matrices according to 
Eqs. (21)) in a manner similar to that illustrated by Eq. (19). 

The backward recursion is illustrated in the right side of Fig. 3, The procedure 
would be to compute (from (23d)) 

gv, = c,lpf’ + c& fl”,. ‘j \-La, 

where qi3’ is given by Eq. (25d) with 1 = 3. Then (from (23~)) 

&T* = ,;y,(a) 1 V,) f ,y 4 1 -: $63) 

with Eq. (25~) for I = 2, etc. The last step (E = 0, last column in Fig. 3) is per- 
formed using the odd lines in Eq. (22a) with the right sides consisting of 

Again, (i.e., for the entire backward recursion) only tridiagonal solutions aad 
vector additions are required, and as the overstoring of the pk vectors by the newly 
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computed V, vectors proceeds, at any given step just that data is available that is 
necessary for the computation of the next step. At the end of backward recursion, 
the arrays that initially contained FI, now contain the solution for VL defined in 
Eq. (6). 

Determination of U 

With the VI, known, the U, could be determined from Eq. (1 lb). The simplest 
procedure, however, is to go back to the lower half of Eq. (7). The results for the 
same example as in the above section (N = 8) are 

Us = &BV, - g, , 
U, = U, + BV, - g, , 

ri, = U, + BV, - g, , I 

(27) 

where the j component of each product BVI, in Eq. (27) is simply ,u( V,,, - Vj+l,k) 
and where Vj+l,k is zero if j + 1 is greater than the number of columns of open 
circles in Fig. 2(b). 

AnaIogJj to Solution of Poisson’s Equation 

At the beginning of this section there was mentioned an analogous procedure 
involving a Poisson equation for V. Ifs and w  were differentiable, Eqs. (1) could be 
combined to obtain 

awlax + azvjay = asjay + am/ax. 

This equation could be integrated numerically using an available direct Poisson 
solver, and the corresponding U could then be obtained by a quadrature. 

The multiplications by A (or B) in (7) represent a/ax, and the operator 
--IVlipl + IV, represents a/S; their combination that appears in the A, matrix in 
Eqs. (11) represents a discrete Laplacian operator on V with three-point central 
differences for the second derivatives. However, the solution algorithm proposed 
for the nonhomogeneous Cauchy-Riemann equations is not equivalent to the 
solution of a Poisson equation in terms of V. Two important differences are the 
following: 

(a) The matrix manipulations in the algorithm do not necessarily represent 
the replacement of derivatives by finite differences. For example, neither these 
manipulations nor the accuracy of results depend in any way on the differentiability 
of s and W. This fact is especially important in planned future applications in which 
s and OJ have values only at isolated discrete points. 
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(bj The Cauchy-Riemann solution algorithm is to be used in iterative 
schemes for nonlinear problems in which s and cri represent complicated nonlinear 
terms that not only vary rapidly but even change form between adjacent. mesh 
points. These varying forms would not be directly adaptable to the Poisson equa- 
tion for FC 

EXAMPLE PROBLEM IN AERODYNAMICS: TRW BKBNVEX AIW=QHL 

As an example to illustrate the accuracy, speed, and other properties of the 
direct solver in a typical application, we consider the small-perturbation soiutio~. 
for steady, it-rotational, subsonic, inviscid flow over a thin, symmetrical parabolic- 
arc biconvex airfoil. This example problem is chosen because (a> it has a 
rather simple mathematical formulation, (b) the analytical solution is available <or 
comparison with the numerical results, (c) the analyticaI solution contains sin- 
gularities which should be “captured” to a certain degree by the numerical solution, 
and (dj the problem has some direct extensions that are of high current interest in 
nonlinear subsonic and transonic aerodynamics. 

In addition to the conditions mentioned above. The flow is assumed to be uniform 
at infinity (far from the airfoil) with velocity lil, (from left to right): which is 
aligned with the airfoil chord. Denote the free-stream Mach number as M. Denote 
by U and V, respectively, the x and 1’ components of total velocity, with the x axis 
along the airfoil chord and the y axis as the bisector of the airfoil chord. Both x 
and y are normalized by the chord length. The biconvex airfoil surface is designated 
by 

where E is now defined as the ratio of maximum airfoil thickness to chord leng:h, 

~~zc7ik-Pe~turbatiorz Pvobfen? and its Anafyficaaf Soiut~oo?r 

Use of the classical small-perturbation approximations 

substituted into the governing conservation equations, leads to the approximare 
thin-airfoil problem (to lowest order in C) for U(X, 4’; Mj and c(x, 3:; I%$> (see 
Refs. 112, 133) in which the flow tangency condition on J: = y,(sj is rransfe;red 
to y = 0 by use of Taylor’s series (see, e.g., Ref. [I4!j. 

The Prandtl-Glauert similarity transformation, which converts the problem for 
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0 < M -C 1 to an equivalent incompressible problem (see, e.g., Ref. [12, 
pp. 30-311, or Ref. [15, p. 64 ffj), is 

4x, y; M) = u/p> 4x, J), Wa) 

2.(x, y; M) = V(x, J;), GObI 

4’ = (l/m (3Oc) 

where 

p = (1 - M”)V. (31) 

Then the equivalent problem (for the half plane, j > 0) is 

ii, + i& = 0, (324 

iis - ii& = 0, Wb) 

with the conditions 

V(x, 0-t) = -4x (-0.5 < x < OS), (32~) 

= 0 (I x / > 0.5), (324 

ii, V -+ 0 as x2 + 7” -+ co. We) 

The analytical solution to Eqs. (32) (see Ref. [12, Table A, 2, p. 21]), in terms of 
the complex variable z = x -t iJ, is 

4 C--Z%=- 1-zln 
[ ( 

z + 0.5 
?r z - 0.5 )I * (33) 

In particular, at j = 0 (where V is given on the upper side by Eqs. (32~) and (32d)), 

U(.x, 0) = -$ (1 - x In 1 s I). 

Note, from Eqs. (32~) and (32d), that V is double-valued at the leading and trailing 
edges in the perturbation problem, and from Eq. (34) that fi goes to minus infinity 
at the leading and trailing edges. 

Direct Numerical Solution 

To solve Eqs. (32) numerically we note that the differential equations are the 
same as Eq. (1) with s = w  = 0 and with U, V, and y replaced respectively by 
U, 6, and j?. Therefore the direct solver using recursive cyclic reduction described 
above can be used. The computational algorithm requires E to be specified on the 
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left and upper boundary lines and L; to be specified on the right and lower boundary 
lines. The condition specified on J’ = 0 is given by Eqs. (3%~) and (32d). For the 
other three boundary lines, the infinity condition, Eq. (32ej, is treated in different 
ways as described in the next subsection. 

After U and 6 are determined at the x and j corresponding to the staggered mesh 
poinrs indicated by open squares and circles in Fig. 2(b)(but with a larger number) 
it is desired to determine numerical values of i7 on 2; = 0 for comparison with the 
analytical solution (Eq. (34)). For this purpose, the following second-order- 
accurate formula for Uj,, was derived using a combination of differencing schenres. 
and the basic equation (1 b), 

in which k = 0 denotes the value of the U index. as we!1 as the value of the ;i 
index, on J = 0 (the bottom dashed line on Fig. Z(b)). The numerical values of i: 
are obtained by replacing U, V. and 4~ by iI, C, and 4,V and setting iti = 0 in 
Eq. (35). 

Perturbation Solutior7 

Numerical results for li and 2! were obtained using the algorithm described 
above, with the mesh parameters NY = 32 (the number of open squares or 
circies in a coi’umn in Fig. 2(b), which must be an Integer power of 2, i.e., 2?) and 
NX = 39 (AK = the number of open symbols in a horizontal FOW in Fig. 2(b)). 
The value of J; = (1 - M”)l+ for the upper boundary for all cases was 2.G, so 
that 4j = l/16. The x locations of the left and right boundaries were either equa3 
to or close to 11.0 (so that 4x = l/20), those values varying according to the 
desired x locations of input values of ii on J = 0. Thus the upstream and down- 
stream computation boundaries were at or about one-half chord length from the 
airfoil, and the upper boundary was at two chord lengths. 

The differences in the results shown in Figs. 4-6 depend on (a) the way tke 
exterior condition (32e) was imposed in the numerical problem, and (‘0) the x 
locations of the imposed discrete conditions from Eqs. (33~) and (32d). For both 
Figs. 4 and 5 the exterior condition at infinity was replaced by imposing the exact 
values ofll and fi given by Eq. (33) along the outer boundaries. This was done so that 
the first illustrations of this technique would not be affected by errors due 
io approximate methods for applying conditions at infinity. (A similar procednre 
was used in Ref. [8] for evaluating results of a technique for second-order equations 
with elliptic operators.) Then for Fig. 6 the perturbation velocities were set at zero 
on the exterior computation boundary, This is the most usual approximate way of 
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applying exterior conditions for problems involving no lift when the analytical 
solution is not known. The differences between Figs. 4 and 5 are in the x locations 
of the imposed 5 on jj = 0. For Fig. 4 the input x locations for V(X, O+)(solid 
circles in Fig. 4 and on bottom row of Fig. 2(b)) straddle both the leading and 
trailing edges of the airfoil. For Fig. 5 the input x locations for U (x, 04.) coincide 
with both the leading edge and trailing edge. Since in Eqs. (32~) and (32d) V is 
double-valued when those two points (x = f0.5) are approached from the left 

x 

FIG. 4. Transformed Prandtl-Glauert perturbation velocities for thin parabolic-arc biconvex 
airfoil with prescribed d on chord line at points on mesh stradd/ing the airfoil edges and with 
exacf perturbation conditions on exterior boundaries (NA’ = 39, NY =z 32). 

FIG. 5. Transformed Prandtl-Glauert perturbation velocities for thin parabolic-arc biconvex 
airfoil with prescribed 6 on chord line at points on mesh coincidirg with the airfoil edges and 
with exact perturbation conditions on exterior boundaries (NX = 39, NY = 32). 
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x 

Frc-. 6. Transformed Prandtl-Glauert perturbation velocities for rhin parabolic-arc biconvex 
airfoil with prescribed ti on chord line at points on mesh srrad&ng the airfoil edges and wirh 
zero perturbation conditions on exterior boundaries (IV.%’ = 39, NY = 33). 

and from the right, the average values were used, ti(+O.5,@‘-) =: F I.0 (see solid 
circles on Fig. 5). 

The numerical results for u (x, 0) in Figs. 4 and 5 (for exact conditions specikd 
on the computation boundary) are accurate for both cases. The singularities at the 
edges are captured well in both figures, but this is most evident in Fig. 4 where :i is 
computed at exactly those points where the analytical solution is infinite. The 
accuracy is surprising in view of the facts (a) that the numerical values of si(x, a:! 
are determined from a formula, Eq. (35): that invoives nilmerical different~atior~ 
of data already obtained from the numerical solution, and (b) that this is true eye-n 
in the neighborhood of points where the analytical SGIUCGII is infinite, without any 
special treatment of those points. Further, combination or superposition of :he 
results of Figs. 4 and 5 would yield a mean solution that would be even more 
accurate than either figure alone. 

Fig. 6 corresponds to Fig. 4 except that zero pertusbaricns are specified ,013 the 
outer boundaries. Clearly, the numerical results differ significantly from the 
analyticai solution near the outer computation boundaries. At the upstream corn- 
putation boundary, the computed E(x, 0) goes to zero; at the downstream 
boundary, where E was specified as zero, the solution for TE is aiso significantly in 
error but is not zero. In spite of the proximity of the comptltation boundarks and 
in spite of these expected errors near the computation boundaries, the numerical 
results are quite accurate for x locations on the airfoil. Again (as in Figs. 4 and 5) 
the edge singularities are captured well. 

It is noted that the limitation of first-order accuracy at the upper boundary in 
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Fig. 2(b) did not have any significant efTect on the accuracy of the solution near the 
airfoil because the flow variations at the upper (outer) boundary are very small. 

Computing Times 

The computation times required for this fast, direct solver are of special interest. 
Table I lists computing times for significant portions of different cases of a program 
comparable to that for the airfoil problem using the same fast direct U, V solver. 
The computing times were measured on the IBM 360/67 Operating System. The 
computer programs used Gaussian elimination (as in Ref. [ll]) for all the simple 
tridiagonal solutions performed within the block cyclic reduction. For each case, 

TABLE I 

Computing Times for U, V Solver on IBM 360/67 
(FORTRAN IV, Level H, OPT = 2) 

NX NY tl (W f2 (set) 

9 8 <.Ol .02 

19 16 .Ol .20 

39 32 .05 .55 

59 64 .I4 1.95 

99 128 .43 7.50 

f3 (se4 

<.Ol 

<.Ol 

.03 

.11 

.37 

NX and NY are the mesh parameters defined in the section above, with reference to 
Fig. 2(b). The time tl includes: all preliminary calculations of parameters, initial- 
izing interior values of s and w, loading boundary values of U and V, modifying the 
fringe of the interior to include boundary values (to get f, and g, in Eq. (7)), 
zeroing boundary values, manipulating fL and g, to get F,, and G, , and computing 
and storing all needed values of the A, for each required 1. The time t, is the time 
required for the cyclic reduction starting with the pL”’ and resulting in the VI: 
(see Fig. 3). Finally, t3 is the time required to obtain U after V is known. 

Note that tl and t3 combined are about 10 s/b oft, . Note also that t, is just that 
time which would be required by a direct cyclic-reduction Poisson solver to compute 
the velocity potential or stream function. If the results of a Poisson solver were used 
to compute the velocity components throughout the entire field (which are auto- 
matically provided by the Cauchy-Riemann solver), the times required by the 
two algorithms would be even closer. 
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CONCLUDING REMARKS 

The above example problem in subsonic aerodynamics, including the comparison 
of the numerical solutions with the analytical solution, has demonstrated s~qeral 
attractive features of the new direct Cauchy-Riemann solver. First, the results 
are highly accurate and capture well the singularities of the analytica’t solution. 
Thus, whereas generalized relaxation schemes for such problems experience COI:- 
vergence difficulties when these “peaks” occur, the direct solver easily produces 
an accurate solution in a single step. Second, the measured computing ti;zles kave 
also demonstrated the high efficiency of the direct solver. 

In future applications, the fast, direct Cauchy-Riemann solver is expected to be 
useful in aerodynamic flow- computations for which the right sides ir t5.c set of 
first-order elliptic equations are not zero (accounted for in the developed 
algorithm). These anticipated applications include nonlinear equations, with the 
direct solver being used within an iteration scheme. In addition it may be possi’nle 
to extend the aigorithm to three dimensions as was done for the second-order 

oisson) solver (Ref. [II]) and also to further generalize the generalized- 
capacity-matrix technique (Ref. [S]) to first-order equations for applying the direct 
Ckchy-Riemann solver in problems with interior bo>Jndary conditions. 

In summary, the results of the example problem have established the potenriei 
usefulness of the new fast, direct Cauchy-Riemann solver in computing 
aerodynamic flows, as well as in the solution of other similar problems in mzthe- 
maticai physics governed by similar equations. 
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